6.4. Two VariablesΒΆ

Let X and Y be two random variables and let F(X,Y)(x,y) be their joint CDF.

limxβ†’βˆ’βˆžyβ†’βˆ’βˆžFX,Y(x,y)=0.
limxβ†’βˆžyβ†’βˆžFX,Y(x,y)=1.

Right continuity:

limx→x0+FX,Y(x,y)=FX,Y(x0,y).
limy→y0+FX,Y(x,y)=FX,Y(x,y0).

The joint probability density function is given by fX,Y(x,y). It satisfies fX,Y(x,y)β‰₯0 and

βˆ«βˆ’βˆžβˆžβˆ«βˆ’βˆžβˆžfX,Y(x,y)dydx=1.

The joint CDF and joint PDF are related by

FX,Y(x,y)=P(X≀x,Y≀y)=βˆ«βˆ’βˆžxβˆ«βˆ’βˆžyfX,Y(u,v)dvdu.

Further

P(a≀X≀b,c≀Y≀d)=∫ab∫cdfX,Y(u,v)dvdu.

The marginal probability is

P(a≀X≀b)=P(a≀X≀b,βˆ’βˆžβ‰€Yβ‰€βˆž)=∫abβˆ«βˆ’βˆžβˆžfX,Y(u,v)dvdu.

We define the marginal density functions as

fX(x)=βˆ«βˆ’βˆžβˆžfX,Y(x,y)dy

and

fY(y)=βˆ«βˆ’βˆžβˆžfX,Y(x,y)dx.

We can now write

P(a≀X≀b)=∫abfX(x)dx.

Similarly

P(c≀Y≀d)=∫cdfY(y)dy.

6.4.1. Conditional DensityΒΆ

We define

P(a≀x≀b|y=c)=∫abfX|Y(x|y=c)dx.

We have

fX|Y(x|y=c)=fX,Y(x,c)fY(c).

In other words

fX|Y(x|y=c)fY(c)=fX,Y(x,c).

In general we write

fX|Y(x|y)fY(y)=fX,Y(x,y).

Or even more loosely as

f(x|y)f(y)=f(x,y).

More identities

f(x|y≀d)=βˆ«βˆ’βˆždf(x,y)dyP(y≀d).

6.4.2. Independent VariablesΒΆ

If X and Y are independent then

fX,Y(x,y)=fX(x)fY(y).
f(x|y)=f(x,y)f(y)=f(x)f(y)f(y)=f(x).

Similarly

f(y|x)=f(y).

The CDF also is separable

FX,Y(x,y)=FX(x)FY(y).