6.1. Random VariablesΒΆ

For different random variables, we will characterize their distributions by several parameters. These are listed below

  • Probability density function (PDF)

  • Cumulative distribution function (CDF)

  • Probability mass function (PMF)

  • Mean (ΞΌ or E(X))

  • Variance (Οƒ2 or Var⁑(X))

  • Skew

  • Kurtosis

  • Characteristic function (CF)

  • Moment generating function (MGF)

  • Second characteristic function

  • Cumulant generating function (CGF)

6.1.1. Cumulative Distribution FunctionΒΆ

The CDF is defined as

FX(x)=P(X≀x).

Properties of CDF:

FX(x)β‰₯0,FX(βˆ’βˆž)=0,FX(∞)=1.

CDF is a monotonically non-decreasing function.

x1<x2⟹FX(x1)≀FX(x2).

FX(βˆ’βˆž) is defined as

FX(βˆ’βˆž)=limxβ†’βˆ’βˆžFX(x).

Similarly:

FX(∞)=limxβ†’βˆžFX(x).

FX(x) is right continuous.

limx→t+FX(x)=FX(t).

6.1.2. Probability Density FunctionΒΆ

Properties of PDF

fX(x)β‰₯0.
βˆ«βˆ’βˆžβˆžfX(x)dx=1.

The CDF and PDF are related as

FX(x)=βˆ«βˆ’βˆžxfX(t)dt.

6.1.3. ExpectationΒΆ

Expectation of a discrete random variable:

E(X)=βˆ‘xxpX(x).

Expectation of a continuous random variable:

E(X)=βˆ«βˆ’βˆžβˆžtfX(t)dt.

Expectation of a function of a random variable:

E[g(X)]=βˆ«βˆ’βˆžβˆžg(t)fX(t)dt.

Mean square value:

E[X2]=βˆ«βˆ’βˆžβˆžt2fX(t)dt.

Variance:

Var⁑(X)=E[X2]βˆ’E[X]2.

n-th moment:

E[Xn]=βˆ«βˆ’βˆžβˆžtnfX(t)dt.

6.1.4. Characteristic FunctionΒΆ

The characteristic function is defined as

Ξ¨X(jΟ‰)β‰œE[exp⁑(jΟ‰X)].

PDF as Fourier transform of CF.

Ξ¨X(jΟ‰)=βˆ«βˆ’βˆžβˆžejΟ‰xfX(x)dx.
fX(x)=12Ο€βˆ«βˆ’βˆžβˆžeβˆ’jΟ‰xΞ¨X(jΟ‰)dΟ‰
Ξ¨X(j0)=E(1)=1.
ddωΨX(jΟ‰)|Ο‰=0=jE[X].
d2dΟ‰2Ξ¨X(jΟ‰)|Ο‰=0=j2E[X2]=βˆ’E[X2].
E[Xk]=1jkdkdωkΨX(jω)|ω=0.

Let Y1,…,Yk be independent. Then

Ξ¨Y1+β‹―+Yk(jΟ‰)=∏Y1,…,YKE[exp⁑(jΟ‰Yi)].

6.1.5. Moment Generating FunctionΒΆ

The moment generating function is defined as

MX(t)β‰œE[exp⁑(tX)].